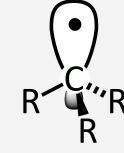
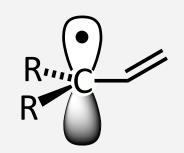

4.8 Radical Reactions (S_R, A_R)

Carbon-Centered Reactive Intermediates

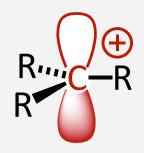

carbanion


5 electrons negative formal charge

teatrahedral

sp³

3 bonds, 1 electron pair octet rule fulfilled


radical

4 electrons neutral

in between

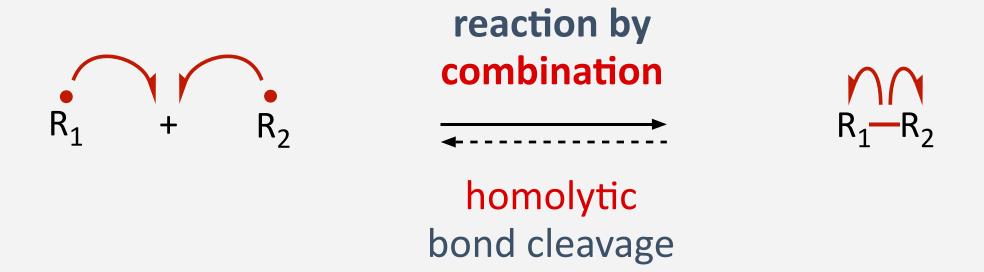
sp³ or sp² or mixed

open shell

carbenium cation

3 electrons positive formal charge

trigonal planar


sp²

3 bonds electron sextet (deficient)

formal charges are determined by homolytic bond cleavage and counting electrons

Radical Reaction Mechanisms

- radical reaction mechanisms involve molecules with unpaired electrons as reactive intermediates
- \bullet radicals are obtained from stable molecular precursors by homolytic bond cleavage of weak σ bonds (bonding electron pair is equally separated between the bonded atoms)

- simple radical reactions occur between two (same or different) radicals
 - formation of a new bonding electron pair by "combination" of the unpaired electrons (•)
 - bond formation hence requires electrons to have opposite spin (represented by half arrows)

Bond Energies

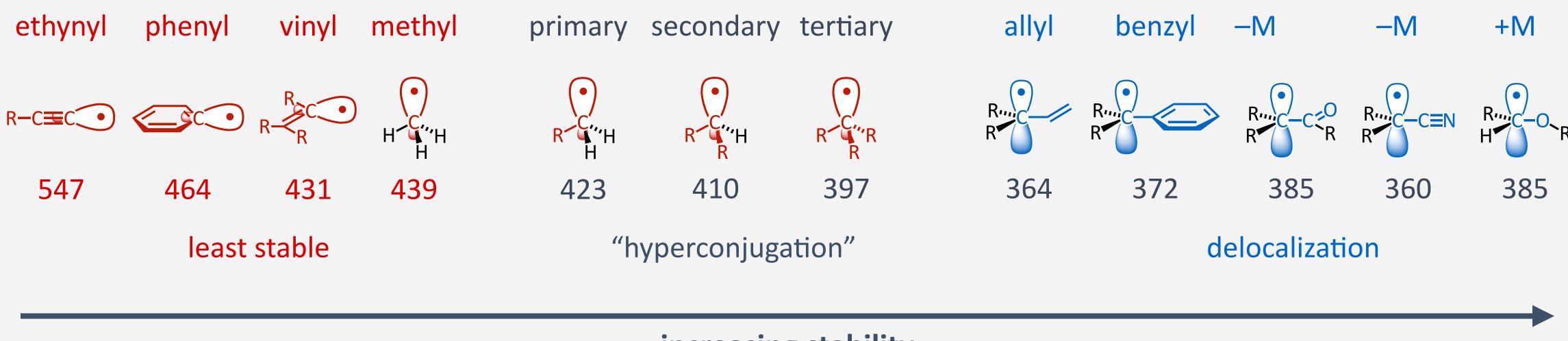
ΔG / kJ mol ⁻¹		Δ	ΔG / kJ mol ⁻¹		ΔG / kJ mol ⁻¹	
Н-ОН	498	H_3C-OH	383	НО-ОН	213	
H-CH ₃	435	H ₃ C-CH ₃	368	MeO-OMe	151	
H–Cl	431	H ₃ C-Cl	349	CI-CI	243	
H-Br	366	H ₃ C–Br	293	Br–Br	192	
H-I	298	H ₃ C–I	234	I—I	151	

- homolytic bond cleavage can be achieved by thermal activation or light as an energy source
 - all bonds can undergo homolytic cleavage at elevated temperatures (typically ≥ 200 °C)
 - just a matter of kinetics because molecules show a Boltzmann distribution of thermal energies
 - light can serve as an energy source (e.g. blue of UV, ≤ 400 nm, ≥ 300 kJ/mol)

Generation of Radicals by Homolytic Bond Cleavage

• radicals are formed by homolytic bond cleavage of weak covalent bonds by heat (Δ) or light ($h\nu$)

peroxides

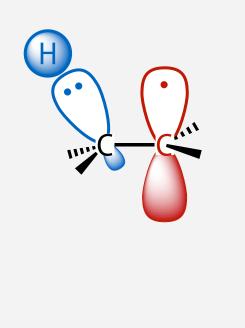

azo compounds

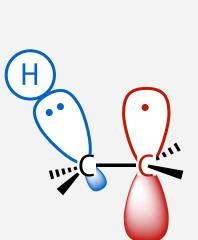
$$-N_2\uparrow$$

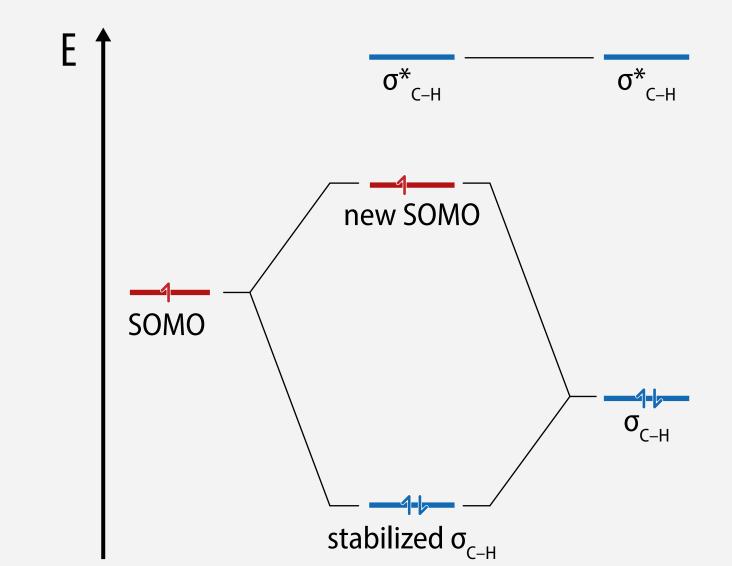
$$\frac{1}{2}$$
 CN

Stability of Carbon Radical Centers

- radicals are often pyramidal, unpaired electron in sp³ orbital carbon center
- \bullet radicals with π -conjugated substituents are planar, unpaired electron in p orbital
- (values are covalent R–H bond energies in kJ/mol, energy required to generate the radical)

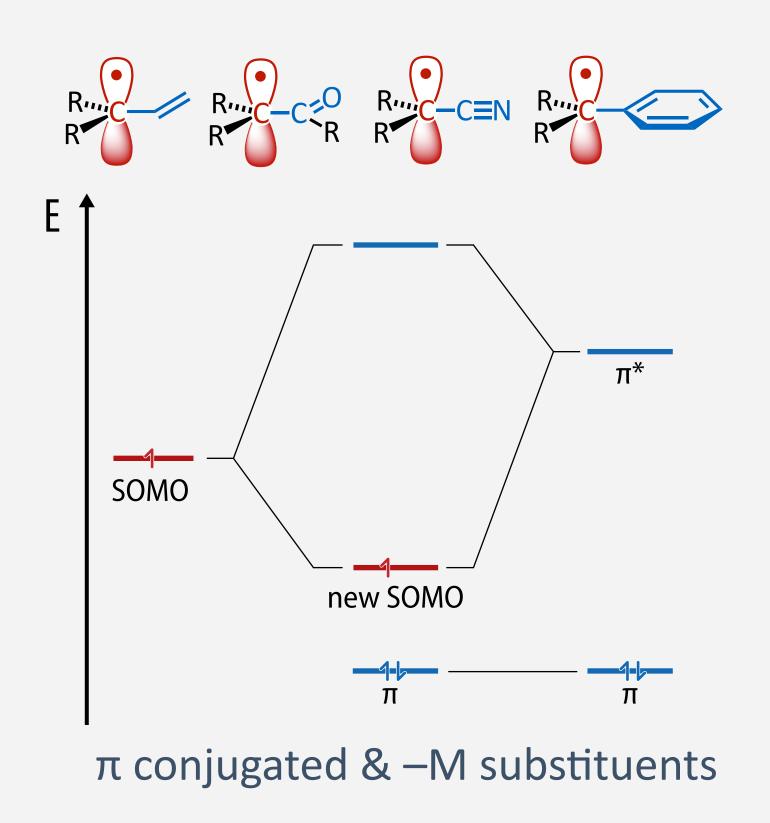


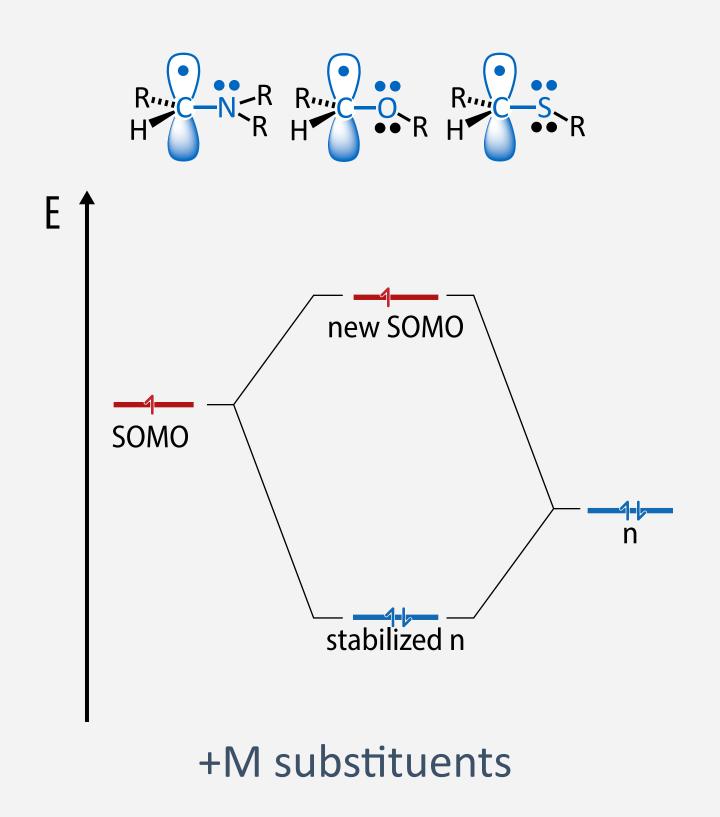

increasing stability


- all radicals are reactive intermediates, have short lifetimes, and cannot be isolated
- free radical reactions are fast single-step reactions, but many side-reactions occur
- free radicals are electron-deficient carbon centers, (almost) same rules for stability as carbocations
- notably, however, stabilization by both +M and -M substutents

Stabilization by Hyperconjugation

• alkyl substituents on the radical carbon center stabilize the radical by "hyperconjugation"

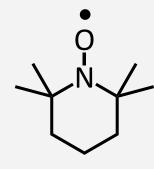



$$\begin{bmatrix} H & & H^{\bullet} \\ R & C - C \\ R & & R \end{bmatrix} \leftarrow \begin{bmatrix} H^{\bullet} & & \\ R & C - C \\ R & & \end{bmatrix} \cdots$$

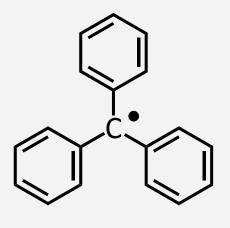
- three-center three-electron bond partially delocalizes the C-H bond towards electron center
- hydrogens on the substituent are rendered more labile for abstraction (by another radical)

Stabilization by +M and -M Substituents

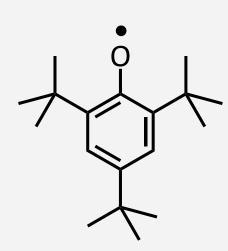
- stabilization by –M substituents works for radicals and carbanions, but not for carbocations
- stabilization by +M substituents works for radicals and carbocations, but not for carbanions



- stabilization by -M substituents facilitates radical generation, yields less reactive radical
- stabilization by +M substituents facilitates radical generation, but yields more reactive radical


Persistent Radicals

• persistent radicals are stable molecular compounds with unpaired electrons, can be isolated



(TEMPO)

teramethylpiperdineoxide

triphenylmethyl (trityl)

2,4,6-tri(tert.-butyl)phenoxyl 2,2-diphenyl-1-picrylhydrazyl (DPPH)

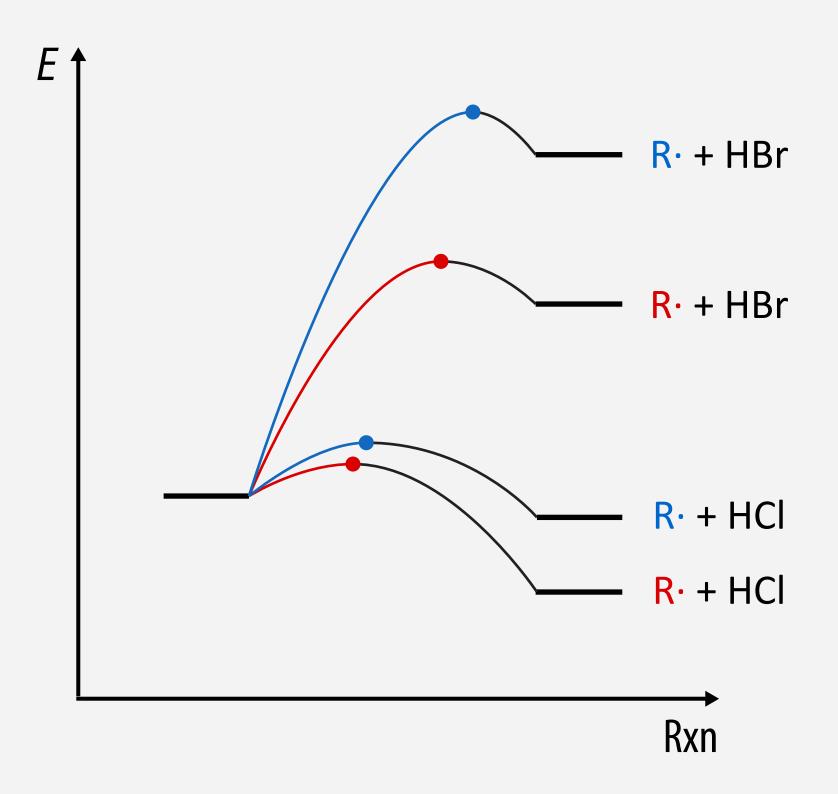
• persistent radicals stabilized by electronic effects and steric hindrance shielding the radical center

Radical-Radical Dimerization Reactions

• alkaline or earth alkaline metals transfer electrons, reduce ketones to alcohols in protic solvents

• earth alkaline metals in aprotic solvents result in radical combination, yielding a diol (pinacol reaction)

• electrostatic repulsion of ketyl radical anions requires complexation with earth alkaline cation


Alkyl Halogenation by Radical Substitution (S_R)

- radical substitution reactions are chain reactions
- conditions chosen to achieve "steady state" of equal initiation and termination reaction rates

Regioselectivity of Radical Substitutions

- regioselectivity of radical substituion reactions is decided in the hydrogen abstraction step
- radicals are highly reactive, all hydrogens compete, product mixtures are always obtained
- outcome is superposition of statistics and stabilization of new radical (C-H bond strength)

CI[•] +
$$\frac{H}{H_3C}$$
 $\frac{H}{CH_3}$ $\frac{H}{H_3C}$ $\frac{H}{CH_3}$ + $\frac{H}{H_3C}$ $\frac{H}{CH_3$

- reactivity chlorine > bromine > iodine (H–Hal bond is weaker)
- C-H bond abstraction becomes less favorable (or even endergonic)
- selectivity chlorine < bromine < iodine radicals ("later" transition states differentiate better)

Electrophilic Substitution versus Radical Substitution with Dihalogens

• on alkylarenes, dihalogens can be used to affect electrophilic or radical substitution reactions

- halogenation of the arene (core) requires a Lewis acid catalyst, polar solvent, cooling
- halogenation of the side chain requires heat or light, an initator, apolar solvent

Dihalogenation of Double Bonds by Radical Addition (A_R)

- radical addition reactions are chain reactions, strongly preferred over radical substitutions
- conditions chosen to achieve "steady state" of equal initiation and termination reaction rates

Hydrohalogenation of Double Bonds by Radical Addition (A_R)

• anti-Markovnikov product is formed because initial radical addition prefers more stable radical

